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Abstract 
 
This paper reports the scientific collaboration between LLR and 
PROSILOG. The aim of this collaboration was to show the 
possibility to quickly implement a system into a FPGA, using 
SystemC4 as the unique description language. Starting from 
behavioral abstraction level, the model, before hardware synthesis, 
is refined down to RTL then automatically translated to the 
equivalent model into VHDL or Verilog. 
 
It will be shown that this design flow is less time consuming, more 
efficient and more reliable than the traditional C++ to HDL flow.  
 

Introduction 
 
The LLR is part of IN2P35, a physics research institute of the 
French scientific research center CNRS. The lab is currently 
involved in the Large Hadron Collider (LHC) project, a proton 
accelerator, currently being built at CERN6. Four detectors will 
study the very high energy events produced by the LHC. One of 
them is the Compact Muon Solenoid (CMS7). LLR teams are 
currently designing electronics systems for the Electromagnetic 
Calorimeter (ECAL) one of the four sub-detectors which will be 
mounted on CMS. 
 
LLR started collaboration with PROSILOG in order to evaluate the 
SystemC modeling possibilities and the associated design flow. 
PROSILOG is a SystemC specialist: its engineers teams have been 
working with this language since its first release, developing and 
providing dedicated models, tools and solutions. 
 
Goal of the collaboration 
The challenge for the two partners was to prove the possibility to 
use SystemC for a full design and verification flow, from 
specification to implementation into an electronics device. The 
electronics system chosen as an example had already been 
implemented, following a classical top-down approach, and 
synthesized from VHDL code. The main purpose of this study was 
to use a smoother design flow, based on SystemC, and obtain by 
another way the RTL description. The final goal was to prove the 
equivalence of this last model with the reference model, and analyze 
the advantages of the new method. 
 
Standard approach  
The traditional flow used to implement this kind of electronics 
system is described in figure 1. It consists of the following steps:  
 
• the required electronics system is first specified by the potential 
user. 
• a behavioral model is then written in C++ and tested with a test 
bench created inside a classical or specific framework8.  
• this material (behavioral model + test bench) is then given to an 
electronics engineer team, who will write the equivalent VHDL or 
Verilog RTL model. 
• after a verification phase, where the RTL model is validated, 
the prototype can be synthesized.  
 
An evident disadvantage of this standard method is that the manual 
abstraction refinement from behavioral to RTL level is made at the 
same time as the manual language translation from C++ to HDL. It 
is proven that this procedure is time consuming and error prone. 
Moreover, in order to verify the RTL model, the C++ test bench has 
also to be manually translated in HDL.  
 

                                                 
4 High level and HDL modeling description language from Open SystemC 
Initiative (OSCI) : http://www.systemc.org/ 
5 Institut National de Physique Nucléaire et de Physique des Particules 
(France) 
6 European Organization for Nuclear Research located in Geneva, 
Switzerland 
7 Compact Muon Solenoid physic detector project from CERN collaboration: 
http://cmsinfo.cern.ch/Welcome.html/ 
8 ROOT, an object oriented data analysis framework for physic experiment: 

http://root.cern.ch/. It is particularly useful to graphically analyze physics 
events simulation results and make decision for behavioral model description. 

Other issues appear when modifications have to be carried out to the 
system. For example, if a new functionality is added to the C++ 
model then the electronics designer has to spend time propagating 
this modification into the HDL code. Sometimes it can be done 
directly, in most cases, it is necessary to iterate between the 
behavioral and the RTL models, which is time consuming. In the 
worst case, the modification is made directly on the HDL code, 
forgetting the C++ model, which stops being up-to-date and as a 
consequence becomes obsolete. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

figure 1 : Traditional design flow 
 
 
In the next section, it will be shown how the issues relative to this 
kind of design flow can be avoided using SystemC. 
 
Collaboration protocol 
A collaboration protocol was written in order to distribute the roles 
of this project. The role of LLR was to write the behavioral model 
and the test bench in SystemC; this model was then used as a golden 
reference. Then, the role of PROSILOG was to refine the SystemC 
model and create an RTL model in the same language. With the 
delivered test bench, a verification step was necessary. Then, the 
RTL SystemC had to be translated using the PROSILOG’s SystemC 
to HDL compiler, which generates the equivalent RTL VHDL or 
Verilog model. The verification of this model was done using the 
same SystemC test bench and a final behavioral comparison with 
the RTL SystemC model was performed. 
 
 
 
Figure 2 below describes the SystemC flow used in this project for 
the design, the refinement and the verification: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

figure 2 : SystemC based design flow 
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The first advantage of this methodology is that the design process 
language remains the same from behavioral to RTL level; thus, the 
delicate task of refinement becomes easier and consequently the 
errors due to language translation can be avoided. 
 
Another advantage is brought by the SystemC to HDL translator 
offering the possibility to automatically translate the RTL 
synthesizable SystemC code into VHDL or Verilog language. Thus, 
the SystemC code remains the only one that must be maintained. 
After modification of the behavioral model, the electronics designer 
must only check if the added code is synthesizable or not. If it’s 
true, the new code is naturally added to the RTL model, otherwise, 
before translation, the modification must be manually performed.  
 
For the verification steps, the present design flow allows to reuse 
the same test bench for the behavioral model, the SystemC RTL 
model and the translated HDL model (using SystemC-
VHDL/Verilog cosimulation). Even if the behavioral model and 
consecutively the test bench are described with unsynthesizable data 
types, it is always much more efficient to use an abstraction 
wrapper in order to adapt the test bench for the RTL models, in 
SystemC or HDL, than to translate it manually. Using the same test 
bench at each level of abstraction allows to obtain more accurate 
verification level.  
 
TPG Strip behavioral SystemC model 
 
The system under study is located on a front end board integrated 
on the LHC/CMS/ECAL detector of CMS. The model provided by 
LLR is a component of the so called Trigger Primitive Generation 
(TPG) system, integrated on an ASIC device, and used as a trigger 
vector provider. These vectors are sent to the central trigger logic 
selecting the event to be recorded. 
The inputs of the system are variable amplitude pulses, digitally 
coded with 12 bits of mantissa plus 2 bits of gain scale9, coming 
from each detector channel and sampled at 40MHz frequency. 
 
TPG10 Strip architecture 
A diagram of the internal architecture of the TPG Strip11 is shown 
in figure 3 

                                                

 
 
 
 
 

 
 
 
 
 
 
 
 
 

figure 3 : TPG Strip internal architecture 
 

The five inputs are decoded using an integer representation by the 
five LIN blocks, then added by ETSTRIP adder. The output of the 
adder is then digitally filtered through an AMPLITUDE FILTER 
module, in order to get the amplitude.PEAK FINDER block detects 
the maximum of the pulse (output is set to one if the current sample 
reach the maximum); in parallel, the FGVB5 generates a veto bit if 
more than n inputs are greater than a threshold (this value and n 
programmable). Finally, the FORMAT module combines all these 
signals in order to generate the trigger vector output. 
 
The TPG Strip was written in SystemC by a LLR physicist without 
any hardware implementation consideration12. This behavioral 

 
9 Requested by the very large dynamic range of the amplitude excursion of 
input signal 
10 Trigger Primitive Generation 
11 More details are available at URL: 
http://polywww.in2p3.fr/work/busson/cms/ECALElectronics/FrontEnd/FENI
X_STRIP.html 
12 Originally this model was written for simulation purpose 

model was then sent to PROSILOG. The code could not be 
synthesized as is, and had to be adapted in order to produce a 
synthesizable RTL model. 
 
Modeling style for the behavioral model 
The TPG Strip block can be seen as a hierarchical module, what 
induce that all the sub-blocks presented before are modeled as 
separated SystemC module. A macro-module considered as the top-
level of the TPG Strip model, instantiates and connects sub-modules 
to each other and to its ports through SystemC signals. 
 
As the TPG Strip manipulates positive integer data with variable 
length, the data types used in the behavioral model were 
sc_uint<n> or sc_int<n>. These SystemC types are template so it 
is possible to set the number of bits that codes the integer value (up 
to 64), and use specific methods as bit part selection, operators, 
informational, settings or conversion methods. At all description 
levels, it was important to use this kind of predefined data types, 
because the specification of behavior integrated bits calculation 
notions. Others data types like bool, unsigned short or unsigned int 
were also used in the design. 
 
The type of processes used for each block was SC_METHOD. This 
type of process can be sensitive on one or more input ports and 
executed on each signal value change inside the sensitivity list.  
 
The only block connected to the clock is the FORMAT module. The 
others, are combinatory and only sensitive to their inputs. 
 
The AMPLITUDE FILTER, the PEAK FINDER and the FORMAT 
modules compute their output as a function of the current and the 
past inputs. Their inputs are stored using a C++ class such as deque 
or queue, which allow stacks manipulation (to push or pop a data 
for instance). Initialization of these stacks is done directly in the 
constructor13 of the concerned modules. 
 
Most of the modules in the TPG Strip use coefficients for output 
evaluation. In the behavioral model, these coefficients are stored in 
tabs and initialized using a function called by the constructor. 

 
Refinement down to SystemC RTL 
 
Getting the behavioral model and its associated test bench, the work 
of PROSILOG was to refine it down to the synthesizable RTL level. 
This level is defined by the SystemC synthesizable subset accepted 
as an entry by the PROSILOG’s SystemC to HDL compiler and 
which is the industry’s largest. 

16 18 

 
In order to start the refinement phase, we firstly launched the 
compiler on the behavioral model to know which of its code 
elements were not synthesizable and one modified them to obtain a 
whole synthesizable model. Thus, all missing elements could be 
identified and an alternative good description was reported to LLR 
in the final collaboration documentation. 
 
The data types used in the behavioral model (sc_uint<n>, 
sc_int<n>, bool, unsigned short, unsigned int) are synthesizable 
and can be still used in the RTL model. Moreover, the usage of the 
.range() and shift >> operators is allowed for the translation in 
RTL. 
 
The SC_METHOD process type is also synthesizable. 
 
It has been seen that in the behavioral model, the initialization is 
performed for each block by using a function, in which the 
coefficients are set to their value, and called from the constructor’s 
module. This kind of function call is accepted by the compiler. 
 
TPG behavioral model is hierarchical, by this means, all sub-blocks 
are instantiated in a top-level macro-module. References of these 
sub-blocks are done using pointers. This kind of hierarchical 
architecture is allowed by the translator and can remain the same in 
the RTL model. 
 

                                                 
13 Each SystemC module has an initialization fonction that is called a 
constructor in C++ terminology 
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It was shown that AMPLITUDE FILTER, PEAK FINDER and 
FORMAT modules use C++ proprietary classes for the stacks 
management (deque and queue). These stacks are used by modules 
in order to store in a pipe the N past inputs values and compute the 
output values following a defined algorithm (respectively filtering, 
peak detection and formatting). The use of these specific C++ 
classes is obviously not synthesizable and for each of these blocks, 
we had to introduce the description of a synthesizable pipe device. 
This was done as follow14: 
 
• addition of clock reset ports to the module 
• creation of a tab ( sample_[N] ) in order to store values in the 
pipe 
• declaration of the do_pipe() method, clock and reset sensitive 
(respectively positive and negative) 
• implementation of this method : for reset, initialization of 
samples_ tab values, as push the new input and shift the stored 
values 
• access to the pipe values by other methods is not changed and 
done as reference of the same indexes 
 
These modifications guarantee the same functional behavior for the 
internal blocs and for the TPG Macro-module, but they also 
introduce a difference in the temporal behavior. 
Because the pipe model, using C++ classes for stack operation, 
doesn’t take into account the one clock period delay between data 
apparition on the input port and storage in the pipe, a difference 
appears. We had to model this behavior in the RTL model and that’s 
why a temporal delay was introduced. 
 
This difference produces a big issue for the FORMAT RTL model. 
This module receives, as inputs, signals coming from FGVBG5 
(f1), AMPLITUDE FILTER (f2) and PEAK FINDER (f3) (see 
figure 3). We have seen that the RTL modeling introduces a one 
clock period time-lag for the output generated by AMPLITUDE 
FILTER. This output is used as input by PEAK FINDER, which 
also introduces a one clock period interval, and then the output of 
this module will obviously present a two clock period delay. Let’s 
see what this difference modifies in the design: 
 
The FORMAT behavioral model confirms the following equation15: 
 
• out(kT) = F[f1(kT), f2(kT), f3(kT)]  ,k 
 
If the same functional behavior is requested for the TPG RTL 
model, the FORMAT module must verify the following equation: 
 
• out(kT) = F[f1[ (k-2)T ], f2[ (k-1)T ], f3(kT)] , k 
 
By taking in account these delays in the FORMAT RTL module, 
the problem could be solved. 
 
Thus the RTL TPG output produces its output with a two clock 
period delay compared to the behavioral model, this delay neither 
change the output samples values nor their sequence. This is what 
can be called an equivalent functional behavior, with a different 
functional behavior. 
 
In order to avoid the modification of the FORMAT module design 
and respect the behavioral model as golden reference, one can 
introduce a one period clock shift registers, as shown in the figure 4. 
In this figure, the modules that introduce a T delay are marked with 
the T symbol. 
 
 
 
 
 

 
 
 
 
 
 

figure 4 : Validation test bench for the SystemC RTL model 

                                                 
14 you can refer to the sources available in the appendix 
15 T=clock period 

The advantage of such a method is that each module behavior is 
independent of its environment. Thus, if one considers that the 
FORMAT module generates its outputs taking into account 
synchronized inputs and moreover if one has to modify the TPG 
design by integrating for instance a module upstream the FORMAT 
module, finally one has only to insert the needed shift registers, in 
order to keep the system synchronism. 
 
Validation method for the SystemC RTL model  
When the synthesizable model is available, one has to verify that its 
functional behavior is the same as the one issued from the 
behavioral model. To do this, one creates a SystemC verification 
project which includes firstly the two models to be compare and 
secondly the originally delivered test bench. The comparison is 
performed by several verification modules connected to the both 
models. A diagram of this verification test bench is presented in 
figure 5: 
 
 Behavioral SystemC 

 
 
 
 
 
             
               
 
 
 
 
 
 
 
 
 
 
 
 
 

 

figure 5 : Validation test bench to compare two model’s view 

 
The LLR’s test bench is used to generate the stimuli to be sent to 
the two SystemC models (behavioral and RTL).  
 
Using this test bench, one is able to compare the outputs of several 
sub-modules from the RTL and the behavioral models. To achieve 
this goal, it was created the generic validation modules in SystemC 
that generate .raw format trace files directly visualized with the 
PROSILOG’s waveform viewer. This view allows to quickly detect 
differences between signals and to find out the mistakes in the 
source code. These modules are template style, which allow to 
specify the type of data to be compared. With them, it’s also 
possible to configure the number of inputs and enable a comparison 
mode where a computed difference signal is generated for each pair 
of signals to be compared. 
As explained in the previous section, some of the sub-modules 
described in the RTL introduce a time gap on their output compared 
to the behavioral model. To compensate these delays, it was also 
added functionality to these validation modules by specifying a 
number of clock period delays. Doing so, errors could be easily 
detected. 
 
Using these validation modules, and the “.vcd” trace generated by 
SystemC, one can also visualized it in the PROSILOG’s viewer. 
Then it is possible to validate, block by block, the equivalence of 
the functional behaviors for the two models. 
 

Translation into VHDL and Verilog 
 
After the RTL SystemC model has been approved, it can be 
translate into VHDL or Verilog language. In this paper the model 
generated in VHDL is only considered, but all the considerations 
made for the VHDL could also be applied for the Verilog. 
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SystemC to HDL compiler 
In order to translate automatically the SystemC to VHDL, one uses 
the PROSILOG’s SC2HDL compiler. A SystemC synthesizable 
subset is defined, which describes the code accepted as input; the 
description of this subset is available on the PROSILOG’s 
website16. 
 
The most important features of the synthesizable subset are the 
following: 
 
• Hierarchical modules   • Loops (for; while) 
• Template SystemC modules  • Member functions 
• Conditional (if ; switch)    • Enumeration 
• Static type conversion   • Constructor functions 
• Array (ports; signals; member variables; sub-modules)  
 
The tab of translation, used for SystemC to VHDL correspondence 
type, was the followings: 
 

bool     bit 
sc_int<N>   signed(N downto 0) 
sc_uint<N>   unsigned(N downto 0) 
unsigned short  unsigned(15 downto 0) 

 
When the translation is launched, only the top level module of TPG 
has to be specified. The compiler analyzes which components and 
sub-blocks have to be translated and generates a VHDL file (.vhd) 
or a Verilog file (.v) for each SystemC description module (.h and 
.cpp files). As example, the different PEAK FINDER’s model codes 
are available in the Appendix. 
 
If a code part is refused by the translator, because it does not belong 
to the SystemC synthesizable subset, or if an error is detected in the 
source code, a well documented report appears, explaining the 
translation issue that occurred. 
 
Validation method for the HDL RTL model 
One of the requirements of the LLR was to keep the same test bench 
for each TPG model’s view. In order to validate the automatically 
generated RTL VHDL model, we took advantage of the 
cosimulation possibilities provided by the PROSILOG’s 
environment called Nepsys. Its cosimulation assistant helps the 
designer to quickly encapsulate a SystemC top-level module in a 
dll17. This dll is FLI18 or PLI19 protocol compatible. A cosimulation 
assistant generates also a translation of the module’s interface to be 
translated, into an entity written in VHDL or Verilog. 
So, the provided test-bench, the RTL SystemC TPG model, and the 
bank of validation modules has been encapsulated in the same “dll”. 
 
As shown in figure 6, a validation bench in VHDL has been 
realized, by instantiating the generated entity, corresponding to the 
cosimulation dll, and connecting it to the RTL VHDL TPG model, 
delivered from the automated translation. The clock and reset signal 
had to be driven from VHDL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

figure 6 : Validation test bench for HDL RTL model 

                                                 
16 http://www.prosilog.com 
17 Dynamic Linked Library used on PC platform  
18 Foreign Language Interface, a procedural access protocol usable in VHDL 
simulator 
19 Programming Language Interface, a C procedural interface usable in 
Verilog simulator 

 
Other signals have been added, that don’t appear on the scheme, and 
which are used to compare outputs of each sub-module in SystemC 
and VHDL. This technique allowed us to use VHDL simulator’s 
debug and trace tools, in addition of the “.vcd” trace files generated 
by SystemC, in order to verify behaviors equivalence of the both 
RTL models. 
 
The results of this validation step were positives and it has been 
shown that both models present the same functional and temporal 
behavior. 
 
The VHDL code could then be used for the prototype synthesis. 
 

Conclusion 
 
Success story 
The LLR laboratory and PROSILOG collaboration was successful 
and allowed to show the possibility to use SystemC as a modeling 
language used for digital hardware systems implementation, from 
behavioral down to RTL level. It has been proven that the use of the 
same language at different abstraction level reduces refinement 
phases time. Moreover, this language could be used by no hardware 
specialists to rapidly define the behavioral of an electronic system. 
At this step, application of a minimum of design rules (see 
appendix) can also greatly reduce the overall time necessary to 
refine a pure behavioral model by an electronics designer. Thus, by 
using the same language, the communication between two different 
kinds of designer can be greatly facilitated. 
 
It has been show that the proposed method reduces the design time 
and design errors by automating translation tasks. This task needs a 
SystemC to HDL compiler, in order to translate the system 
description in a language accepted by classical synthesizers. 
 
This experience didn’t target the hardware synthesis of the system, 
which could allow to verify the prototype behavior on an FPGA. It 
proposes nevertheless verification methods and tools in order to 
help designers to validate models at several abstraction levels, using 
the same test bench all along the design flow. 
 
A recommendations list for SystemC coding style is available in the 
appendix. These recommendations can help designers team during 
model refinement in SystemC from behavioral to RTL level. 
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Appendix 
 
Recommendations list for model refinement in SystemC SystemC cosimulation dll 
 
• Pointers use is not recommended as reference to data exchange 
variables between modules. Pointers haven’t any hardware 
equivalent. 
 
• Avoid the use of proprietary C++ functions (stack management 
for instance). This is certainly very useful, for functional modeling, 
but they are not synthesizable in most of the cases and could require  
big design modification during refinement down to RTL. 
 
• Try to integrate, as soon as functional level, the clock and reset 
ports, in all modules which may work in synchronous mode. If they 
are introduced later in the design flow or not taken into 
consideration in the algorithms, big modification in the module 
design will be necessary when moving down to RTL.   
 
• Hardware implementation constraint must be taken in account 
when one create a model at the temporal behavioral level. This will 
avoid to take in account different temporal behavior during 
verification phases and allow to reuse the same test bench at all 
abstraction levels. 
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Behavioural model for PEAK FINDER module  
 
// BEH_TPG_peak_finder.h  
class BEH_TPG_peak_finder : public sc_module { 
 
public: 

sc_in< sc_uint<18> >       in ; 
sc_out<bool>               out ; 
 
deque< sc_uint<18> >   samples_ ; 

   
   void check() ; 
   
SC_CTOR( BEH_TPG_peak_finder ) { 
   SC_METHOD( check ) ; 
     sensitive << in ; 

for (int i=0;i<3;i++)  
         samples_.push_back(0) ; 
   } 
} ;  

 
// BEH_TPG_peak_finder.cpp 
void BEH_TPG_peak_finder::check() { 

 
bool peak = 0 ; 
samples_.pop_front() ; 
samples_.push_back(in) ; 
 
if( samples_[1] > samples_[0] &&  samples_[1] > samples_[2] )  

peak = 1 ;  
 
out = peak ; 

} 

 
SystemC RTL model for PEAK FINDER module 
 
// RTL_TPG_peak_finder.h 
#include <systemc.h> 
 
class RTL_TPG_peak_finder : public sc_module { 
 
public: 
 sc_in< bool >        reset ; 
 sc_in< bool >        clk ; 
 sc_in< sc_uint<18> >       in ; 
 sc_out<bool>              out ; 
 

sc_signal<sc_uint<18> > samples_ [3]; 
 
   void do_check() ; 
   void do_pip() ; 
 
SC_CTOR( RTL_TPG_peak_finder ) { 
 SC_METHOD( do_pip ) ; 
  sensitive_pos << clk ; 
  sensitive_neg << reset ; 
 
 SC_METHOD( do_check ); 
  for (int i = 0; i < 3; i++) { 
   sensitive << samples_[i]; 
  } 
 } 
} ; 
 
// RTL_TPG_peak_finder.cpp 
#include "RTL_TPG_peak_finder.h" 
 
void RTL_TPG_peak_finder::do_check()  
{ 
 out = (samples_[1].read() > samples_[0].read()) && 
  (samples_[1].read() > samples_[2].read()); 
} 
 
void RTL_TPG_peak_finder::do_pip() 
{ 
 if (!reset.read()) { 
  for (int i=0 ; i<3 ; i++) { 
   samples_[i] = 0 ; 
  } 
 } else { 
  for (int i=0 ; i<2 ; i++) { 
   samples_[i] = samples_[i + 1] ; 
  } 
  samples_[2] = in; 
 } 
} 
 
 

VHDL RTL model for PEAK FINDER module 
 
--RTL_TPG_peak_finder.vhd  
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity RTL_TPG_peak_finder is 
 port( 
  reset: in bit; 
  clk: in bit; 
  in_k: in unsigned(17 downto 0); 

  out_k: out bit 
 ); 
end RTL_TPG_peak_finder; 
 
architecture rtl of RTL_TPG_peak_finder is 
 
----------------------------------------------------------------------- 
-- The functions below are used by VHDL code generated by the Compiler 
----------------------------------------------------------------------- 
 
function prosilog_conv_from_bool_to_bit(bool_value : boolean) return bit is 
 variable res : bit; 

begin 
  if (bool_value) then 
   res := '1'; 
  else 
   res := '0'; 
  end if; 
  return res; 
end prosilog_conv_from_bool_to_bit; 
 
function prosilog_conv_from_bit_to_std_logic(bit_value : bit) return std_logic is 
  variable res : std_logic; 
 begin 
  if (bit_value = '1') then 
   res := '1'; 
  else 
   res := '0'; 
  end if; 
  return res; 
end prosilog_conv_from_bit_to_std_logic; 
 
function prosilog_conv_from_std_logic_to_std_logic_vector(logic_value : 
std_logic) return std_logic_vector is 
  variable res : std_logic_vector(0 downto 0); 
 begin 
  res(0) := logic_value; 
  return res; 
end prosilog_conv_from_std_logic_to_std_logic_vector; 
 
 function prosilog_conv_from_std_logic_to_bit(logic_value : std_logic) return 
bit is 
  variable res : bit; 
 begin 
  if (logic_value = '1') then 
   res := '1'; 
  else 
   res := '0'; 
  end if; 
  return res; 
end prosilog_conv_from_std_logic_to_bit; 
 
function prosilog_conv_from_lv_to_lowlv(lv_value : std_logic_vector; size : integer) 
return std_logic_vector is 
 begin 
  return lv_value(size-1 downto 0); 
end prosilog_conv_from_lv_to_lowlv; 
 
function prosilog_conv_from_bv_to_lowbv(bv_value : bit_vector; size : integer) 
return bit_vector is 
 begin 
  return bv_value(size-1 downto 0); 
end prosilog_conv_from_bv_to_lowbv; 
 
function prosilog_conv_lv_to_bv(A : std_logic_vector) return bit_vector is 
  variable B : bit_vector(A'range); 
 begin 
  for j in A'range loop 
   if (A(j) = '1') then 
    B(j) := '1'; 
   else 
    B(j) := '0'; 
   end if; 
  end loop; 
  return B; 
end prosilog_conv_lv_to_bv; 
 
function prosilog_conv_bv_to_lv(A : bit_vector) return std_logic_vector is 
  variable B : std_logic_vector(A'range); 
 begin 
  for j in A'range loop 
   if (A(j) = '1') then 
    B(j) := '1'; 
   else 
    B(j) := '0'; 
   end if; 
  end loop; 
  return B; 
end prosilog_conv_bv_to_lv; 
----------------------------------------------------------------------- 
-- Module implementation 
----------------------------------------------------------------------- 
type samples_s_idx_9_mem_type is array( 0 to 2 ) of unsigned(17 downto 0); 
signal samples_s_idx_9 : samples_s_idx_9_mem_type; 
 
begin 
 
do_pip : process(in_k, samples_s_idx_9, clk, reset) 
 begin 
  if (((not reset)) = '1') then 
      samples_s_idx_9(0) <= "000000000000000000"; 
      samples_s_idx_9(1) <= "000000000000000000"; 
      samples_s_idx_9(2) <= "000000000000000000"; 
  else 
   if (clk'event and clk = '1') then 
      samples_s_idx_9(0) <= samples_s_idx_9(1); 



      samples_s_idx_9(1) <= samples_s_idx_9(2); 
    samples_s_idx_9(2) <= in_k; 
   end if; 
  end if; 
end process do_pip; 
 
do_check : process(samples_s_idx_9) 
 begin 

out_k <= (prosilog_conv_from_bool_to_bit((samples_s_idx_9(1) > 
samples_s_idx_9(0))) and 
prosilog_conv_from_bool_to_bit((samples_s_idx_9(1) > 
samples_s_idx_9(2)))); 

end process do_check; 
end rtl; 

 
 
Verilog RTL model for PEAK FINDER module 
 
//RTL_TPG_peak_finder.v 
 
module RTL_TPG_peak_finder (reset,clk,in,out); 
 
 input   reset; 
 input   clk; 
 input [17:0] in; 
 output  out; 
 reg   out; 
 
 reg [17:0] samples__idx_9[0:2]; 
 
always @ ( posedge clk or negedge reset ) 
begin : do_pip 
 if ((! reset)) 
 begin 
  samples__idx_9[0] <= 18'b000000000000000000; 
  samples__idx_9[1] <= 18'b000000000000000000; 
  samples__idx_9[2] <= 18'b000000000000000000; 
 end 
 else 
 begin 
  samples__idx_9[0] <= samples__idx_9[1]; 
  samples__idx_9[1] <= samples__idx_9[2]; 
  samples__idx_9[2] <= in; 
 end 
end 
 
always @ ( samples__idx_9 ) 
begin : do_check 
  out <= ((samples__idx_9[1] > samples__idx_9[0]) && 
(samples__idx_9[1] > samples__idx_9[2])); 
end 
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