

From Behavioral to RTL1 Design Flow in SystemC

LLR2– PROSILOG3 scientific collaboration

by
Emmanuel Vaumorin – PROSILOG

Thierry Romanteau – LLR

Contacts for PROSILOG: Emmanuel Vaumorin - vaumorin@prosilog.com
Contacts for LLR: Thierry Romanteau - Romanteau@poly.in2p3.fr

1 Register Transfer Level description, depicts a textual description that can be processed by a synthesis tool
2 Laboratoire Leprince Ringuet, Ecole Polytechnique, route de Saclay 91128 PALAISEAU (FRANCE)
3 PROSILOG, 8 rue Traversière 95000 CERGY PREFECTURE (FRANCE)

Abstract

This paper reports the scientific collaboration between LLR and
PROSILOG. The aim of this collaboration was to show the
possibility to quickly implement a system into a FPGA, using
SystemC4 as the unique description language. Starting from
behavioral abstraction level, the model, before hardware synthesis,
is refined down to RTL then automatically translated to the
equivalent model into VHDL or Verilog.

It will be shown that this design flow is less time consuming, more
efficient and more reliable than the traditional C++ to HDL flow.

Introduction

The LLR is part of IN2P35, a physics research institute of the
French scientific research center CNRS. The lab is currently
involved in the Large Hadron Collider (LHC) project, a proton
accelerator, currently being built at CERN6. Four detectors will
study the very high energy events produced by the LHC. One of
them is the Compact Muon Solenoid (CMS7). LLR teams are
currently designing electronics systems for the Electromagnetic
Calorimeter (ECAL) one of the four sub-detectors which will be
mounted on CMS.

LLR started collaboration with PROSILOG in order to evaluate the
SystemC modeling possibilities and the associated design flow.
PROSILOG is a SystemC specialist: its engineers teams have been
working with this language since its first release, developing and
providing dedicated models, tools and solutions.

Goal of the collaboration
The challenge for the two partners was to prove the possibility to
use SystemC for a full design and verification flow, from
specification to implementation into an electronics device. The
electronics system chosen as an example had already been
implemented, following a classical top-down approach, and
synthesized from VHDL code. The main purpose of this study was
to use a smoother design flow, based on SystemC, and obtain by
another way the RTL description. The final goal was to prove the
equivalence of this last model with the reference model, and analyze
the advantages of the new method.

Standard approach
The traditional flow used to implement this kind of electronics
system is described in figure 1. It consists of the following steps:

• the required electronics system is first specified by the potential
user.
• a behavioral model is then written in C++ and tested with a test
bench created inside a classical or specific framework8.
• this material (behavioral model + test bench) is then given to an
electronics engineer team, who will write the equivalent VHDL or
Verilog RTL model.
• after a verification phase, where the RTL model is validated,
the prototype can be synthesized.

An evident disadvantage of this standard method is that the manual
abstraction refinement from behavioral to RTL level is made at the
same time as the manual language translation from C++ to HDL. It
is proven that this procedure is time consuming and error prone.
Moreover, in order to verify the RTL model, the C++ test bench has
also to be manually translated in HDL.

4 High level and HDL modeling description language from Open SystemC
Initiative (OSCI) : http://www.systemc.org/
5 Institut National de Physique Nucléaire et de Physique des Particules
(France)
6 European Organization for Nuclear Research located in Geneva,
Switzerland
7 Compact Muon Solenoid physic detector project from CERN collaboration:
http://cmsinfo.cern.ch/Welcome.html/
8 ROOT, an object oriented data analysis framework for physic experiment:

http://root.cern.ch/. It is particularly useful to graphically analyze physics
events simulation results and make decision for behavioral model description.

Other issues appear when modifications have to be carried out to the
system. For example, if a new functionality is added to the C++
model then the electronics designer has to spend time propagating
this modification into the HDL code. Sometimes it can be done
directly, in most cases, it is necessary to iterate between the
behavioral and the RTL models, which is time consuming. In the
worst case, the modification is made directly on the HDL code,
forgetting the C++ model, which stops being up-to-date and as a
consequence becomes obsolete.

figure 1 : Traditional design flow

In the next section, it will be shown how the issues relative to this
kind of design flow can be avoided using SystemC.

Collaboration protocol
A collaboration protocol was written in order to distribute the roles
of this project. The role of LLR was to write the behavioral model
and the test bench in SystemC; this model was then used as a golden
reference. Then, the role of PROSILOG was to refine the SystemC
model and create an RTL model in the same language. With the
delivered test bench, a verification step was necessary. Then, the
RTL SystemC had to be translated using the PROSILOG’s SystemC
to HDL compiler, which generates the equivalent RTL VHDL or
Verilog model. The verification of this model was done using the
same SystemC test bench and a final behavioral comparison with
the RTL SystemC model was performed.

Figure 2 below describes the SystemC flow used in this project for
the design, the refinement and the verification:

figure 2 : SystemC based design flow

Implementation

Verification

Verification

FPGA
Prototype

Synthesis

Abstraction

RTL Model
VHDL/Verilog

Specifications

Behavioral model
C/C++

Refinement
+ Translation

In situ Verification

Abstraction

Implementation

Specifications

Verification in ROOT

Behavioral model
SystemC

Refinement

Verification in SystemC

RTL Model Translation RTL Model
SystemC VHDL/Verilog

Synthesis
Verification in cosimulation

In situ Verification FPGA
Prototype

The first advantage of this methodology is that the design process
language remains the same from behavioral to RTL level; thus, the
delicate task of refinement becomes easier and consequently the
errors due to language translation can be avoided.

Another advantage is brought by the SystemC to HDL translator
offering the possibility to automatically translate the RTL
synthesizable SystemC code into VHDL or Verilog language. Thus,
the SystemC code remains the only one that must be maintained.
After modification of the behavioral model, the electronics designer
must only check if the added code is synthesizable or not. If it’s
true, the new code is naturally added to the RTL model, otherwise,
before translation, the modification must be manually performed.

For the verification steps, the present design flow allows to reuse
the same test bench for the behavioral model, the SystemC RTL
model and the translated HDL model (using SystemC-
VHDL/Verilog cosimulation). Even if the behavioral model and
consecutively the test bench are described with unsynthesizable data
types, it is always much more efficient to use an abstraction
wrapper in order to adapt the test bench for the RTL models, in
SystemC or HDL, than to translate it manually. Using the same test
bench at each level of abstraction allows to obtain more accurate
verification level.

TPG Strip behavioral SystemC model

The system under study is located on a front end board integrated
on the LHC/CMS/ECAL detector of CMS. The model provided by
LLR is a component of the so called Trigger Primitive Generation
(TPG) system, integrated on an ASIC device, and used as a trigger
vector provider. These vectors are sent to the central trigger logic
selecting the event to be recorded.
The inputs of the system are variable amplitude pulses, digitally
coded with 12 bits of mantissa plus 2 bits of gain scale9, coming
from each detector channel and sampled at 40MHz frequency.

TPG10 Strip architecture
A diagram of the internal architecture of the TPG Strip11 is shown
in figure 3

figure 3 : TPG Strip internal architecture

The five inputs are decoded using an integer representation by the
five LIN blocks, then added by ETSTRIP adder. The output of the
adder is then digitally filtered through an AMPLITUDE FILTER
module, in order to get the amplitude.PEAK FINDER block detects
the maximum of the pulse (output is set to one if the current sample
reach the maximum); in parallel, the FGVB5 generates a veto bit if
more than n inputs are greater than a threshold (this value and n
programmable). Finally, the FORMAT module combines all these
signals in order to generate the trigger vector output.

The TPG Strip was written in SystemC by a LLR physicist without
any hardware implementation consideration12. This behavioral

9 Requested by the very large dynamic range of the amplitude excursion of
input signal
10 Trigger Primitive Generation
11 More details are available at URL:
http://polywww.in2p3.fr/work/busson/cms/ECALElectronics/FrontEnd/FENI
X_STRIP.html
12 Originally this model was written for simulation purpose

model was then sent to PROSILOG. The code could not be
synthesized as is, and had to be adapted in order to produce a
synthesizable RTL model.

Modeling style for the behavioral model
The TPG Strip block can be seen as a hierarchical module, what
induce that all the sub-blocks presented before are modeled as
separated SystemC module. A macro-module considered as the top-
level of the TPG Strip model, instantiates and connects sub-modules
to each other and to its ports through SystemC signals.

As the TPG Strip manipulates positive integer data with variable
length, the data types used in the behavioral model were
sc_uint<n> or sc_int<n>. These SystemC types are template so it
is possible to set the number of bits that codes the integer value (up
to 64), and use specific methods as bit part selection, operators,
informational, settings or conversion methods. At all description
levels, it was important to use this kind of predefined data types,
because the specification of behavior integrated bits calculation
notions. Others data types like bool, unsigned short or unsigned int
were also used in the design.

The type of processes used for each block was SC_METHOD. This
type of process can be sensitive on one or more input ports and
executed on each signal value change inside the sensitivity list.

The only block connected to the clock is the FORMAT module. The
others, are combinatory and only sensitive to their inputs.

The AMPLITUDE FILTER, the PEAK FINDER and the FORMAT
modules compute their output as a function of the current and the
past inputs. Their inputs are stored using a C++ class such as deque
or queue, which allow stacks manipulation (to push or pop a data
for instance). Initialization of these stacks is done directly in the
constructor13 of the concerned modules.

Most of the modules in the TPG Strip use coefficients for output
evaluation. In the behavioral model, these coefficients are stored in
tabs and initialized using a function called by the constructor.

Refinement down to SystemC RTL

Getting the behavioral model and its associated test bench, the work
of PROSILOG was to refine it down to the synthesizable RTL level.
This level is defined by the SystemC synthesizable subset accepted
as an entry by the PROSILOG’s SystemC to HDL compiler and
which is the industry’s largest.

16 18

In order to start the refinement phase, we firstly launched the
compiler on the behavioral model to know which of its code
elements were not synthesizable and one modified them to obtain a
whole synthesizable model. Thus, all missing elements could be
identified and an alternative good description was reported to LLR
in the final collaboration documentation.

The data types used in the behavioral model (sc_uint<n>,
sc_int<n>, bool, unsigned short, unsigned int) are synthesizable
and can be still used in the RTL model. Moreover, the usage of the
.range() and shift >> operators is allowed for the translation in
RTL.

The SC_METHOD process type is also synthesizable.

It has been seen that in the behavioral model, the initialization is
performed for each block by using a function, in which the
coefficients are set to their value, and called from the constructor’s
module. This kind of function call is accepted by the compiler.

TPG behavioral model is hierarchical, by this means, all sub-blocks
are instantiated in a top-level macro-module. References of these
sub-blocks are done using pointers. This kind of hierarchical
architecture is allowed by the translator and can remain the same in
the RTL model.

13 Each SystemC module has an initialization fonction that is called a
constructor in C++ terminology

PEAK
FINDER

18

 /

 /

18

 /

18

 /

18

 /

 / LIN0

16

 /

16

 /

16

 /

16

 /
18

 /

 1

 /

16

 / 1 /

LIN1

LIN2

LIN3

LIN4

ETSTRIP

FGVB5

AMPLITUDE
FILTER

18 PEAK
 / FINDER

FORMAT

f2
f3

f1

out

http://polywww.in2p3.fr/work/busson/cms/ECALElectronics/FrontEnd/FENIX_STRIP.html
http://polywww.in2p3.fr/work/busson/cms/ECALElectronics/FrontEnd/FENIX_STRIP.html
http://polywww.in2p3.fr/work/busson/cms/ECALElectronics/FrontEnd/FENIX_STRIP.html

It was shown that AMPLITUDE FILTER, PEAK FINDER and
FORMAT modules use C++ proprietary classes for the stacks
management (deque and queue). These stacks are used by modules
in order to store in a pipe the N past inputs values and compute the
output values following a defined algorithm (respectively filtering,
peak detection and formatting). The use of these specific C++
classes is obviously not synthesizable and for each of these blocks,
we had to introduce the description of a synthesizable pipe device.
This was done as follow14:

• addition of clock reset ports to the module
• creation of a tab (sample_[N]) in order to store values in the
pipe
• declaration of the do_pipe() method, clock and reset sensitive
(respectively positive and negative)
• implementation of this method : for reset, initialization of
samples_ tab values, as push the new input and shift the stored
values
• access to the pipe values by other methods is not changed and
done as reference of the same indexes

These modifications guarantee the same functional behavior for the
internal blocs and for the TPG Macro-module, but they also
introduce a difference in the temporal behavior.
Because the pipe model, using C++ classes for stack operation,
doesn’t take into account the one clock period delay between data
apparition on the input port and storage in the pipe, a difference
appears. We had to model this behavior in the RTL model and that’s
why a temporal delay was introduced.

This difference produces a big issue for the FORMAT RTL model.
This module receives, as inputs, signals coming from FGVBG5
(f1), AMPLITUDE FILTER (f2) and PEAK FINDER (f3) (see
figure 3). We have seen that the RTL modeling introduces a one
clock period time-lag for the output generated by AMPLITUDE
FILTER. This output is used as input by PEAK FINDER, which
also introduces a one clock period interval, and then the output of
this module will obviously present a two clock period delay. Let’s
see what this difference modifies in the design:

The FORMAT behavioral model confirms the following equation15:

• out(kT) = F[f1(kT), f2(kT), f3(kT)] ,k

If the same functional behavior is requested for the TPG RTL
model, the FORMAT module must verify the following equation:

• out(kT) = F[f1[(k-2)T], f2[(k-1)T], f3(kT)] , k

By taking in account these delays in the FORMAT RTL module,
the problem could be solved.

Thus the RTL TPG output produces its output with a two clock
period delay compared to the behavioral model, this delay neither
change the output samples values nor their sequence. This is what
can be called an equivalent functional behavior, with a different
functional behavior.

In order to avoid the modification of the FORMAT module design
and respect the behavioral model as golden reference, one can
introduce a one period clock shift registers, as shown in the figure 4.
In this figure, the modules that introduce a T delay are marked with
the T symbol.

figure 4 : Validation test bench for the SystemC RTL model

14 you can refer to the sources available in the appendix
15 T=clock period

The advantage of such a method is that each module behavior is
independent of its environment. Thus, if one considers that the
FORMAT module generates its outputs taking into account
synchronized inputs and moreover if one has to modify the TPG
design by integrating for instance a module upstream the FORMAT
module, finally one has only to insert the needed shift registers, in
order to keep the system synchronism.

Validation method for the SystemC RTL model
When the synthesizable model is available, one has to verify that its
functional behavior is the same as the one issued from the
behavioral model. To do this, one creates a SystemC verification
project which includes firstly the two models to be compare and
secondly the originally delivered test bench. The comparison is
performed by several verification modules connected to the both
models. A diagram of this verification test bench is presented in
figure 5:

 Behavioral SystemC

figure 5 : Validation test bench to compare two model’s view

The LLR’s test bench is used to generate the stimuli to be sent to
the two SystemC models (behavioral and RTL).

Using this test bench, one is able to compare the outputs of several
sub-modules from the RTL and the behavioral models. To achieve
this goal, it was created the generic validation modules in SystemC
that generate .raw format trace files directly visualized with the
PROSILOG’s waveform viewer. This view allows to quickly detect
differences between signals and to find out the mistakes in the
source code. These modules are template style, which allow to
specify the type of data to be compared. With them, it’s also
possible to configure the number of inputs and enable a comparison
mode where a computed difference signal is generated for each pair
of signals to be compared.
As explained in the previous section, some of the sub-modules
described in the RTL introduce a time gap on their output compared
to the behavioral model. To compensate these delays, it was also
added functionality to these validation modules by specifying a
number of clock period delays. Doing so, errors could be easily
detected.

Using these validation modules, and the “.vcd” trace generated by
SystemC, one can also visualized it in the PROSILOG’s viewer.
Then it is possible to validate, block by block, the equivalence of
the functional behaviors for the two models.

Translation into VHDL and Verilog

After the RTL SystemC model has been approved, it can be
translate into VHDL or Verilog language. In this paper the model
generated in VHDL is only considered, but all the considerations
made for the VHDL could also be applied for the Verilog.

PEAK
FINDER

LIN0

LIN1

LIN2

LIN3

LIN4

ETSTRIP

FGVB5

AMPLITU
E

D

FILTER

PEAK
FINDER

FORMAT

T T

T

T T

PEAK
FINDER

LIN0

LIN1

LIN2

LIN3

LIN4

ETSTRIP

FGVB5

AMPLITUDE
FILTER

PEAK
FINDER

FORMAT T T

T

T T

 clock reset

clock

clock

Test
Bench Verification modules

RTL SystemC

SystemC to HDL compiler
In order to translate automatically the SystemC to VHDL, one uses
the PROSILOG’s SC2HDL compiler. A SystemC synthesizable
subset is defined, which describes the code accepted as input; the
description of this subset is available on the PROSILOG’s
website16.

The most important features of the synthesizable subset are the
following:

• Hierarchical modules • Loops (for; while)
• Template SystemC modules • Member functions
• Conditional (if ; switch) • Enumeration
• Static type conversion • Constructor functions
• Array (ports; signals; member variables; sub-modules)

The tab of translation, used for SystemC to VHDL correspondence
type, was the followings:

bool  bit
sc_int<N>  signed(N downto 0)
sc_uint<N>  unsigned(N downto 0)
unsigned short  unsigned(15 downto 0)

When the translation is launched, only the top level module of TPG
has to be specified. The compiler analyzes which components and
sub-blocks have to be translated and generates a VHDL file (.vhd)
or a Verilog file (.v) for each SystemC description module (.h and
.cpp files). As example, the different PEAK FINDER’s model codes
are available in the Appendix.

If a code part is refused by the translator, because it does not belong
to the SystemC synthesizable subset, or if an error is detected in the
source code, a well documented report appears, explaining the
translation issue that occurred.

Validation method for the HDL RTL model
One of the requirements of the LLR was to keep the same test bench
for each TPG model’s view. In order to validate the automatically
generated RTL VHDL model, we took advantage of the
cosimulation possibilities provided by the PROSILOG’s
environment called Nepsys. Its cosimulation assistant helps the
designer to quickly encapsulate a SystemC top-level module in a
dll17. This dll is FLI18 or PLI19 protocol compatible. A cosimulation
assistant generates also a translation of the module’s interface to be
translated, into an entity written in VHDL or Verilog.
So, the provided test-bench, the RTL SystemC TPG model, and the
bank of validation modules has been encapsulated in the same “dll”.

As shown in figure 6, a validation bench in VHDL has been
realized, by instantiating the generated entity, corresponding to the
cosimulation dll, and connecting it to the RTL VHDL TPG model,
delivered from the automated translation. The clock and reset signal
had to be driven from VHDL.

figure 6 : Validation test bench for HDL RTL model

16 http://www.prosilog.com
17 Dynamic Linked Library used on PC platform
18 Foreign Language Interface, a procedural access protocol usable in VHDL
simulator
19 Programming Language Interface, a C procedural interface usable in
Verilog simulator

Other signals have been added, that don’t appear on the scheme, and
which are used to compare outputs of each sub-module in SystemC
and VHDL. This technique allowed us to use VHDL simulator’s
debug and trace tools, in addition of the “.vcd” trace files generated
by SystemC, in order to verify behaviors equivalence of the both
RTL models.

The results of this validation step were positives and it has been
shown that both models present the same functional and temporal
behavior.

The VHDL code could then be used for the prototype synthesis.

Conclusion

Success story
The LLR laboratory and PROSILOG collaboration was successful
and allowed to show the possibility to use SystemC as a modeling
language used for digital hardware systems implementation, from
behavioral down to RTL level. It has been proven that the use of the
same language at different abstraction level reduces refinement
phases time. Moreover, this language could be used by no hardware
specialists to rapidly define the behavioral of an electronic system.
At this step, application of a minimum of design rules (see
appendix) can also greatly reduce the overall time necessary to
refine a pure behavioral model by an electronics designer. Thus, by
using the same language, the communication between two different
kinds of designer can be greatly facilitated.

It has been show that the proposed method reduces the design time
and design errors by automating translation tasks. This task needs a
SystemC to HDL compiler, in order to translate the system
description in a language accepted by classical synthesizers.

This experience didn’t target the hardware synthesis of the system,
which could allow to verify the prototype behavior on an FPGA. It
proposes nevertheless verification methods and tools in order to
help designers to validate models at several abstraction levels, using
the same test bench all along the design flow.

A recommendations list for SystemC coding style is available in the
appendix. These recommendations can help designers team during
model refinement in SystemC from behavioral to RTL level.

Acknowledgements TO LLR:
Special thank to Mr. Romanteau for his collaboration initiative and
technical management, Pascal Paganini, Nicolas Regnault for their
work on the SystemC code, Philippe Busson and Ludwik
Dobrzynski for the management of the project.

Appendix

Recommendations list for model refinement in SystemC SystemC cosimulation dll

• Pointers use is not recommended as reference to data exchange
variables between modules. Pointers haven’t any hardware
equivalent.

• Avoid the use of proprietary C++ functions (stack management
for instance). This is certainly very useful, for functional modeling,
but they are not synthesizable in most of the cases and could require
big design modification during refinement down to RTL.

• Try to integrate, as soon as functional level, the clock and reset
ports, in all modules which may work in synchronous mode. If they
are introduced later in the design flow or not taken into
consideration in the algorithms, big modification in the module
design will be necessary when moving down to RTL.

• Hardware implementation constraint must be taken in account
when one create a model at the temporal behavioral level. This will
avoid to take in account different temporal behavior during
verification phases and allow to reuse the same test bench at all
abstraction levels.

reset clock

Test
Bench

VHDL Test bench

TPG
validation SystemC RTL
module

TPG
VHDL RTL

Behavioural model for PEAK FINDER module

// BEH_TPG_peak_finder.h
class BEH_TPG_peak_finder : public sc_module {

public:

sc_in< sc_uint<18> > in ;
sc_out<bool> out ;

deque< sc_uint<18> > samples_ ;

 void check() ;

SC_CTOR(BEH_TPG_peak_finder) {
 SC_METHOD(check) ;
 sensitive << in ;

for (int i=0;i<3;i++)
 samples_.push_back(0) ;
 }
} ;

// BEH_TPG_peak_finder.cpp
void BEH_TPG_peak_finder::check() {

bool peak = 0 ;
samples_.pop_front() ;
samples_.push_back(in) ;

if(samples_[1] > samples_[0] && samples_[1] > samples_[2])

peak = 1 ;

out = peak ;

}

SystemC RTL model for PEAK FINDER module

// RTL_TPG_peak_finder.h
#include <systemc.h>

class RTL_TPG_peak_finder : public sc_module {

public:
 sc_in< bool > reset ;
 sc_in< bool > clk ;
 sc_in< sc_uint<18> > in ;
 sc_out<bool> out ;

sc_signal<sc_uint<18> > samples_ [3];

 void do_check() ;
 void do_pip() ;

SC_CTOR(RTL_TPG_peak_finder) {
 SC_METHOD(do_pip) ;
 sensitive_pos << clk ;
 sensitive_neg << reset ;

 SC_METHOD(do_check);
 for (int i = 0; i < 3; i++) {
 sensitive << samples_[i];
 }
 }
} ;

// RTL_TPG_peak_finder.cpp
#include "RTL_TPG_peak_finder.h"

void RTL_TPG_peak_finder::do_check()
{
 out = (samples_[1].read() > samples_[0].read()) &&
 (samples_[1].read() > samples_[2].read());
}

void RTL_TPG_peak_finder::do_pip()
{
 if (!reset.read()) {
 for (int i=0 ; i<3 ; i++) {
 samples_[i] = 0 ;
 }
 } else {
 for (int i=0 ; i<2 ; i++) {
 samples_[i] = samples_[i + 1] ;
 }
 samples_[2] = in;
 }
}

VHDL RTL model for PEAK FINDER module

--RTL_TPG_peak_finder.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity RTL_TPG_peak_finder is
 port(
 reset: in bit;
 clk: in bit;
 in_k: in unsigned(17 downto 0);

 out_k: out bit
);
end RTL_TPG_peak_finder;

architecture rtl of RTL_TPG_peak_finder is

-- The functions below are used by VHDL code generated by the Compiler

function prosilog_conv_from_bool_to_bit(bool_value : boolean) return bit is
 variable res : bit;

begin
 if (bool_value) then
 res := '1';
 else
 res := '0';
 end if;
 return res;
end prosilog_conv_from_bool_to_bit;

function prosilog_conv_from_bit_to_std_logic(bit_value : bit) return std_logic is
 variable res : std_logic;
 begin
 if (bit_value = '1') then
 res := '1';
 else
 res := '0';
 end if;
 return res;
end prosilog_conv_from_bit_to_std_logic;

function prosilog_conv_from_std_logic_to_std_logic_vector(logic_value :
std_logic) return std_logic_vector is
 variable res : std_logic_vector(0 downto 0);
 begin
 res(0) := logic_value;
 return res;
end prosilog_conv_from_std_logic_to_std_logic_vector;

 function prosilog_conv_from_std_logic_to_bit(logic_value : std_logic) return
bit is
 variable res : bit;
 begin
 if (logic_value = '1') then
 res := '1';
 else
 res := '0';
 end if;
 return res;
end prosilog_conv_from_std_logic_to_bit;

function prosilog_conv_from_lv_to_lowlv(lv_value : std_logic_vector; size : integer)
return std_logic_vector is
 begin
 return lv_value(size-1 downto 0);
end prosilog_conv_from_lv_to_lowlv;

function prosilog_conv_from_bv_to_lowbv(bv_value : bit_vector; size : integer)
return bit_vector is
 begin
 return bv_value(size-1 downto 0);
end prosilog_conv_from_bv_to_lowbv;

function prosilog_conv_lv_to_bv(A : std_logic_vector) return bit_vector is
 variable B : bit_vector(A'range);
 begin
 for j in A'range loop
 if (A(j) = '1') then
 B(j) := '1';
 else
 B(j) := '0';
 end if;
 end loop;
 return B;
end prosilog_conv_lv_to_bv;

function prosilog_conv_bv_to_lv(A : bit_vector) return std_logic_vector is
 variable B : std_logic_vector(A'range);
 begin
 for j in A'range loop
 if (A(j) = '1') then
 B(j) := '1';
 else
 B(j) := '0';
 end if;
 end loop;
 return B;
end prosilog_conv_bv_to_lv;

-- Module implementation

type samples_s_idx_9_mem_type is array(0 to 2) of unsigned(17 downto 0);
signal samples_s_idx_9 : samples_s_idx_9_mem_type;

begin

do_pip : process(in_k, samples_s_idx_9, clk, reset)
 begin
 if (((not reset)) = '1') then
 samples_s_idx_9(0) <= "000000000000000000";
 samples_s_idx_9(1) <= "000000000000000000";
 samples_s_idx_9(2) <= "000000000000000000";
 else
 if (clk'event and clk = '1') then
 samples_s_idx_9(0) <= samples_s_idx_9(1);

 samples_s_idx_9(1) <= samples_s_idx_9(2);
 samples_s_idx_9(2) <= in_k;
 end if;
 end if;
end process do_pip;

do_check : process(samples_s_idx_9)
 begin

out_k <= (prosilog_conv_from_bool_to_bit((samples_s_idx_9(1) >
samples_s_idx_9(0))) and
prosilog_conv_from_bool_to_bit((samples_s_idx_9(1) >
samples_s_idx_9(2))));

end process do_check;
end rtl;

Verilog RTL model for PEAK FINDER module

//RTL_TPG_peak_finder.v

module RTL_TPG_peak_finder (reset,clk,in,out);

 input reset;
 input clk;
 input [17:0] in;
 output out;
 reg out;

 reg [17:0] samples__idx_9[0:2];

always @ (posedge clk or negedge reset)
begin : do_pip
 if ((! reset))
 begin
 samples__idx_9[0] <= 18'b000000000000000000;
 samples__idx_9[1] <= 18'b000000000000000000;
 samples__idx_9[2] <= 18'b000000000000000000;
 end
 else
 begin
 samples__idx_9[0] <= samples__idx_9[1];
 samples__idx_9[1] <= samples__idx_9[2];
 samples__idx_9[2] <= in;
 end
end

always @ (samples__idx_9)
begin : do_check
 out <= ((samples__idx_9[1] > samples__idx_9[0]) &&
(samples__idx_9[1] > samples__idx_9[2]));
end

	TPG Strip architecture
	Modeling style for the behavioral model
	SystemC to HDL compiler
	Validation method for the HDL RTL model

